Pancreatic Neoplasms clinical trials at UC Irvine
17 in progress, 8 open to eligible people
Different Doses of BI 765049 When Given Alone and When Given With Ezabenlimab to Patients With Advanced Solid Tumors Expressing the Protein B7-H6 on the Cell Surface
open to eligible people ages 18 years and up
This study is open to adults with advanced solid tumors whose previous cancer treatment was not successful. People can participate if their tumor has the B7-H6 marker or if they have colorectal cancer. The study tests 2 medicines called BI 765049 and ezabenlimab (BI 754091). Both medicines may help the immune system fight cancer. The purpose of this study is to find out the highest dose of BI 765049 alone and in combination with ezabenlimab the participants can tolerate. In this study, BI 765049 is given to people for the first time. Participants can stay in the study for up to 3 years, if they benefit from treatment and can tolerate it. During this time, they get BI 765049 alone or in combination with ezabenlimab as infusion into a vein every 3 weeks. The doctors check the health of the participants and note any health problems that could have been caused by BI 765049 or ezabenlimab. The doctors also regularly monitor the size of the tumor.
Orange, California and other locations
Zenocutuzumab (MCLA-128) in Patients With Solid Tumors Harboring an NRG1 Fusion (eNRGy)
open to eligible people ages 18 years and up
This is a Phase I/II, open-label, multi-center, multi-national, dose escalation, single agent study to assess the safety, tolerability, PK, PD, immunogenicity and anti-tumor activity of zenocutuzumab (MCLA-128) in patients with solid tumors harboring an NRG1 fusion (eNRGy)
Irvine, California and other locations
Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers
open to eligible people ages 18 years and up
This is a prospective pilot protocol investigating whether ctDNA detection be improved by sampling the cancer draining vein versus the standard practice of sampling from a peripheral vein in patients who are undergoing biopsies for hepatobiliary and pancreatic cancers.
Orange, California
New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer
open to eligible people ages 18 years and up
This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Irvine, California and other locations
Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients With Pancreatic Cancer That Has Spread With Inherited BRCA Mutations
open to eligible people ages 18 years and up
This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cell's genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Irvine, California and other locations
Testing the Safety of the Anti-Cancer Drugs Durvalumab and Olaparib During Radiation Therapy for Locally Advanced Unresectable Pancreatic Cancer
open to eligible people ages 18 years and up
This phase I trial tests the safety and tolerability of olaparib in combination with durvalumab and radiation therapy in patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. The combination of targeted therapy with olaparib, immunotherapy with durvalumab and radiation therapy may stimulate an anti-tumor immune response and promote tumor control in locally advanced unresectable pancreatic cancer.
Orange, California and other locations
Testing the Use of the Usual Chemotherapy Before and After Surgery for Removable Pancreatic Cancer
open to eligible people ages 18 years and up
This phase III trial compares perioperative chemotherapy (given before and after surgery) versus adjuvant chemotherapy (given after surgery) for the treatment of pancreatic cancer that can be removed by surgery (removable/resectable). Chemotherapy drugs, such as fluorouracil, irinotecan, leucovorin, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before and after surgery (perioperatively) may work better in treating patients with pancreatic cancer compared to giving chemotherapy after surgery (adjuvantly).
Costa Mesa, California and other locations
PLATINUM Trial: Optimizing Chemotherapy for the Second-Line Treatment of Metastatic BRCA1/2 or PALB2-Associated Metastatic Pancreatic Cancer
open to eligible people ages 18 years and up
This phase II/III trial compares the effect of the 3-drug chemotherapy combination of nab-paclitaxel, gemcitabine, plus cisplatin versus the 2-drug chemotherapy combination of nab-paclitaxel plus gemcitabine for the treatment of patients with pancreatic cancer that has spread to other places in the body (metastatic) and a known genetic mutation in the BRCA1, BRCA2, or PALB2 gene.
Irvine, California and other locations
CA-4948 Added to Standard Chemotherapy to Treat Metastatic or Unresectable Pancreatic Cancer
Sorry, currently not accepting new patients, but might later
This phase I trial tests the safety, side effects, and best dose of emavusertib (CA-4948) in combination with gemcitabine and nab-paclitaxel in treating patients with pancreatic ductal adenocarcinoma that has spread from where it first started (primary site) to other places in the body (metastatic) or cannot be removed by surgery (unresectable). CA-4948 is in a class of medications called kinase inhibitors. It works by blocking the action of abnormal proteins called interleukin-1 receptor-associated kinase 4 (IRAK4) and FMS-like tyrosine kinase 3 (FLT3) that signal cells to multiply. This may help keep cancer cells from growing. The usual approach for patients with pancreatic ductal adenocarcinoma is treatment with chemotherapy drugs gemcitabine and nab-paclitaxel. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill cancer cells. Paclitaxel is in a class of medications called anti-microtubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Giving CA-4948 in combination with gemcitabine and nab-paclitaxel may shrink or stabilize metastatic or unresectable pancreatic ductal adenocarcinoma.
Orange, California and other locations
9-ING-41 in Patients With Advanced Cancers
Sorry, in progress, not accepting new patients
GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.
Orange, California and other locations
Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)
Sorry, in progress, not accepting new patients
This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
Orange, California and other locations
Comparing Two Treatment Combinations, Gemcitabine and Nab-Paclitaxel With 5-Fluorouracil, Leucovorin, and Liposomal Irinotecan for Older Patients With Pancreatic Cancer That Has Spread
Sorry, in progress, not accepting new patients
This phase II trial compares two treatment combinations: gemcitabine hydrochloride and nab-paclitaxel, or fluorouracil, leucovorin calcium, and liposomal irinotecan in older patients with pancreatic cancer that has spread to other places in the body (metastatic). Drugs used in chemotherapy, such as gemcitabine hydrochloride, nab-paclitaxel, fluorouracil, leucovorin calcium, and liposomal irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study may help doctors find out which treatment combination is better at prolonging life in older patients with metastatic pancreatic cancer.
Orange, California and other locations
Gemcitabine Hydrochloride With or Without Erlotinib Hydrochloride Followed by the Same Chemotherapy Regimen With or Without Radiation Therapy and Capecitabine or Fluorouracil in Treating Patients With Pancreatic Cancer That Has Been Removed by Surgery
Sorry, in progress, not accepting new patients
This randomized phase II-R/III trial studies gemcitabine hydrochloride with or without erlotinib hydrochloride followed by the same chemotherapy regimen with or without radiation therapy and capecitabine or fluorouracil in treating patients with pancreatic cancer that was removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride, capecitabine, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells. Giving chemotherapy together with or without erlotinib hydrochloride and/or radiation therapy after surgery may kill any tumor cells that remain after surgery. It is not yet known whether chemotherapy is more effective when given with or without erlotinib hydrochloride and/or radiation therapy in treating pancreatic cancer.
Orange, California and other locations
Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)
Sorry, in progress, not accepting new patients
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
Costa Mesa, California and other locations
Anti-cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, With a Specific Focus on Patients With Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer
Sorry, in progress, not accepting new patients
This phase I trial investigates the side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may help to slow the growth of tumors for longer than seen with those drugs alone.
Orange, California and other locations
Testing the Combination of Anetumab Ravtansine With Either Nivolumab, Nivolumab and Ipilimumab, or Gemcitabine and Nivolumab in Advanced Pancreatic Cancer
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of anetumab ravtansine when given together with nivolumab, ipilimumab and gemcitabine hydrochloride in treating patients with mesothelin positive pancreatic cancer that has spread to other places in the body (advanced). Anetumab ravtansine is a monoclonal antibody, called anetumab ravtansine, linked to a chemotherapy drug called DM4. Anetumab attaches to mesothelin positive cancer cells in a targeted way and delivers DM4 to kill them. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving anetumab ravtansine together with nivolumab, ipilimumab, and gemcitabine hydrochloride may work better in treating patients with pancreatic cancer.
Orange, California and other locations
Pancreatic Cancer Early Detection Consortium
Sorry, not currently recruiting here
The purpose of the Pancreatic Cancer Early Detection (PRECEDE) Consortium is to conduct research on multiple aspects of early detection and prevention of pancreatic ductal adenocarcinoma (PDAC) by establishing a multisite cohort of individuals with family history of PDAC and/or individuals carrying pathogenic/likely pathogenic germline variants (PGVs) in genes linked to PDAC risk for longitudinal follow up.
Orange, California and other locations
Our lead scientists for Pancreatic Neoplasms research studies include Jennifer B. Valerin Misako Nagasaka, MD Farshid Dayyani Nadine Abi-Jaoudeh.
Last updated: