Skip to main content

Gliosarcoma clinical trials at UC Irvine

5 in progress, 2 open to eligible people

Showing trials for
  • DSC-MRI in Measuring Relative Cerebral Blood Volume for Early Response to Bevacizumab in Patients With Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase II trial studies how well dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) works in measuring relative cerebral blood volume (rCBV) for early response to bevacizumab in patients with glioblastoma that has come back. DSC-MRI may help evaluate changes in the blood vessels within the cancer to determine a patient?s response to treatment.

    Orange, California and other locations

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy Compared to the Usual Treatment (Temozolomide and Radiation Therapy) for Newly Diagnosed MGMT Unmethylated Glioblastoma

    open to eligible people ages 18 years and up

    This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.

    Orange, California and other locations

  • Dose-Escalated Photon IMRT or Proton Beam Radiation Therapy Versus Standard-Dose Radiation Therapy and Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma

    Sorry, not currently recruiting here

    This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.

    Orange, California and other locations

  • Bevacizumab With or Without Trebananib in Treating Patients With Recurrent Brain Tumors

    Sorry, in progress, not accepting new patients

    This partially randomized phase II trial with a safety run-in component studies the side effects and how well bevacizumab given with or without trebananib works in treating patients with brain tumors that have come back (recurrent). Immunotherapy with monoclonal antibodies, such as bevacizumab, may induce changes in the body's immune system and interfere with the ability of tumor cells to grow and spread. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether giving bevacizumab together with trebananib is more effective than bevacizumab alone in treating brain tumors.

    Orange, California and other locations

  • ERC1671/GM-CSF/Cyclophosphamide for the Treatment of Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This phase II clinical trial studies how well ERC1671 plus Granulocyte-macrophage colony-stimulating factor (GM-CSF) plus Cyclophosphamide with Bevacizumab works compared to Placebo Injection plus Placebo Pill with Bevacizumab in treating patients with recurrent/progressive, bevacizumab naïve glioblastoma multiforme and gliosarcoma (World Health Organization (WHO) grade IV malignant gliomas, GBM).

    Orange, California and other locations

Last updated: